Partially Linear Additive Functional Regression

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Partially Linear Additive Models

The generalized partially linear additive model (GPLAM) is a flexible and interpretable approach to building predictive models. It combines features in an additive manner, allowing them to have either a linear or nonlinear effect on the response. However, the assignment of features to the linear and nonlinear groups is typically assumed known. Thus, to make a GPLAM a viable approach in situatio...

متن کامل

Functional Additive Regression

We suggest a new method, called Functional Additive Regression, or FAR, for efficiently performing high dimensional functional regression. FAR extends the usual linear regression model involving a functional predictor, X(t), and a scalar response, Y , in two key respects. First, FAR uses a penalized least squares optimization approach to efficiently deal with high dimensional problems involving...

متن کامل

Partially linear censored quantile regression.

Censored regression quantile (CRQ) methods provide a powerful and flexible approach to the analysis of censored survival data when standard linear models are felt to be appropriate. In many cases however, greater flexibility is desired to go beyond the usual multiple regression paradigm. One area of common interest is that of partially linear models: one (or more) of the explanatory covariates ...

متن کامل

Partially Linear Reduced-rank Regression

We introduce a new dimension-reduction technique, the Partially Linear Reduced-rank Regression (PLRR) model, for exploring possible nonlinear structure in a regression involving both multivariate response and covariate. The PLRR model specifies that the response vector loads linearly on some linear indices of the covariate, and nonlinearly on some other indices of the covariate. We give a set o...

متن کامل

Supplemental Material to “ Partially Linear Additive Quantile Regression in Ultra - High Dimension

The tables of the appendix provide additional numerical results. Table 1 summarizes simulation results for Q-SCAD, LS-SCAD, Q-MCP, LS-MCP with sample sizes 50, 100 and 200 for modeling the 0.7 conditional quantile for the heteroscedastic error setting described in Section 4 of the main paper. The MCP approaches, Q-MCP and LS-MCP, are the equivalent of Q-SCAD and LS-SCAD with the SCAD penalty fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistica Sinica

سال: 2023

ISSN: 1017-0405

DOI: 10.5705/ss.202020.0418